Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Hormones (Athens) ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619812

RESUMO

EndoBridge 2023 took place on October 20-22, 2023, in Antalya, Turkey. Accredited by the European Council, the 3-day scientific program of the 11th Annual Meeting of EndoBridge included state-of-the-art lectures and interactive small group discussion sessions incorporating interesting and challenging clinical cases led by globally recognized leaders in the field and was well attended by a highly diverse audience. Following its established format over the years, the program provided a comprehensive update across all aspects of endocrinology and metabolism, including topics in pituitary, thyroid, bone, and adrenal disorders, neuroendocrine tumors, diabetes mellitus, obesity, nutrition, and lipid disorders. As usual, the meeting was held in English with simultaneous translation into Russian, Arabic, and Turkish. The abstracts of clinical cases presented by the delegates during oral and poster sessions have been published in JCEM Case Reports. Herein, we provide a paper on highlights and pearls of the meeting sessions covering a wide range of subjects, from thyroid nodule stratification to secondary osteoporosis and from glycemic challenges in post-bariatric surgery to male hypogonadism. This report emphasizes the latest developments in the field, along with clinical approaches to common endocrine issues. The 12th annual meeting of EndoBridge will be held on October 17-20, 2024 in Antalya, Turkey.

2.
Mol Cell Endocrinol ; 585: 112176, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341019

RESUMO

Hyperaldosteronism is often associated with inappropriate aldosterone production and aldosterone synthase (Cyp11b2) expression. Normally, Cyp11b2 expression is limited to the adrenal zona glomerulosa (ZG) and regulated by angiotensin II which signals through Gq protein-coupled receptors. As cells migrate inwards, they differentiate into 11ß-hydroxylase-expressing zona fasciculata (ZF) cells lacking Cyp11b2. The mechanism causing ZG-specific aldosterone biosynthesis is still unclear. We investigated the effect of chronic Gq signaling using transgenic mice with a clozapine N-oxide (CNO)-activated human M3 muscarinic receptor (DREADD) coupled to Gq (hM3Dq) that was expressed throughout the adrenal cortex. CNO raised circulating aldosterone in the presence of a high sodium diet with greater response seen in females compared to males. Immunohistochemistry and transcriptomics indicated disrupted zonal Cyp11b2 expression while Wnt signaling remained unchanged. Chronic Gq-DREADD signaling also induced an intra-adrenal RAAS in CNO-treated mice. Chronic Gq signaling disrupted adrenal cortex zonal aldosterone production associated with ZF expression of Cyp11b2.


Assuntos
Córtex Suprarrenal , Hiperaldosteronismo , Masculino , Feminino , Humanos , Camundongos , Animais , Zona Fasciculada , Aldosterona/metabolismo , Córtex Suprarrenal/metabolismo , Zona Glomerulosa/metabolismo , Citocromo P-450 CYP11B2/genética , Via de Sinalização Wnt , Camundongos Transgênicos
3.
Front Endocrinol (Lausanne) ; 14: 1252727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810891

RESUMO

Introduction: Graves' disease is an autoimmune disorder caused by auto-antibodies against the thyroid stimulating hormone receptor (TSHR). Overstimulation of the TSHR induces hyperthyroidism and thyroid eye disease (TED) as the most common extra thyroidal manifestation of Graves' disease. In TED, the TSHR cross talks with the insulin-like growth factor 1 receptor (IGF-1R) in orbital fibroblasts leading to inflammation, deposition of hyaluronan and adipogenesis. The bone marrow may play an important role in autoimmune diseases, but its role in Graves' disease and TED is unknown. Here, we investigated whether induction of experimental Graves' disease and accompanying TED involves bone marrow activation and whether interference with IGF-1R signaling prevents this activation. Results: Immunization of mice with TSHR resulted in an increase the numbers of CD4-positive T-lymphocytes (p ≤0.0001), which was normalized by linsitinib (p = 0.0029), an increase of CD19-positive B-lymphocytes (p= 0.0018), which was unaffected by linsitinib and a decrease of GR1-positive cells (p= 0.0038), which was prevented by linsitinib (p= 0.0027). In addition, we observed an increase of Sca-1 positive hematopietic stem cells (p= 0.0007) and of stromal cell-derived factor 1 (SDF-1) (p ≤0.0001) after immunization with TSHR which was prevented by linsitinib (Sca-1: p= 0.0008, SDF-1: p ≤0.0001). TSHR-immunization also resulted in upregulation of CCL-5, IL-6 and osteopontin (all p ≤0.0001) and a concomitant decrease of the immune-inhibitory cytokines IL-10 (p= 0.0064) and PGE2 (p ≤0.0001) in the bone marrow (all p≤ 0.0001). Treatment with the IGF-1R antagonist linsitinib blocked these events (all p ≤0.0001). We further demonstrate a down-regulation of arginase-1 expression (p= 0.0005) in the bone marrow in TSHR immunized mice, with a concomitant increase of local arginine (p ≤0.0001). Linsitinib induces an upregulation of arginase-1 resulting in low arginase levels in the bone marrow. Reconstitution of arginine in bone marrow cells in vitro prevented immune-inhibition by linsitinib. Conclusion: Collectively, these data indicate that the bone marrow is activated in experimental Graves' disease and TED, which is prevented by linsitinib. Linsitinib-mediated immune-inhibition is mediated, at least in part, by arginase-1 up-regulation, consumption of arginine and thereby immune inhibition.


Assuntos
Doenças Autoimunes , Doença de Graves , Oftalmopatia de Graves , Camundongos , Animais , Oftalmopatia de Graves/metabolismo , Arginase , Medula Óssea/metabolismo , Receptores da Tireotropina , Doenças Autoimunes/complicações , Arginina
4.
Cancers (Basel) ; 15(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37509222

RESUMO

Adrenocortical carcinoma (ACC) is a rare but highly aggressive cancer with limited treatment options and poor survival for patients with advanced disease. An improved understanding of the transcriptional programs engaged in ACC will help direct rational, targeted therapies. Whereas activating mutations in Wnt/ß-catenin signaling are frequently observed, the ß-catenin-dependent transcriptional targets that promote tumor progression are poorly understood. To address this question, we analyzed ACC transcriptome data and identified a novel Wnt/ß-catenin-associated signature in ACC enriched for the extracellular matrix (ECM) and predictive of poor survival. This suggested an oncogenic role for Wnt/ß-catenin in regulating the ACC microenvironment. We further investigated the minor fibrillar collagen, collagen XI alpha 1 (COL11A1), and found that COL11A1 expression originates specifically from cancer cells and is strongly correlated with both Wnt/ß-catenin activation and poor patient survival. Inhibition of constitutively active Wnt/ß-catenin signaling in the human ACC cell line, NCI-H295R, significantly reduced the expression of COL11A1 and other ECM components and decreased cancer cell viability. To investigate the preclinical potential of Wnt/ß-catenin inhibition in the adrenal microenvironment, we developed a minimally invasive orthotopic xenograft model of ACC and demonstrated that treatment with the newly developed Wnt/ß-catenin:TBL1 inhibitor Tegavivint significantly reduced tumor growth. Together, our data support that the inhibition of aberrantly active Wnt/ß-catenin disrupts transcriptional reprogramming of the microenvironment and reduces ACC growth and survival. Furthermore, this ß-catenin-dependent oncogenic program can be therapeutically targeted with a newly developed Wnt/ß-catenin inhibitor. These results show promise for the further clinical development of Wnt/ß-catenin inhibitors in ACC and unveil a novel Wnt/ß-catenin-regulated transcriptome.

5.
Front Endocrinol (Lausanne) ; 14: 1211473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435490

RESUMO

Introduction: Graves' disease (GD) is an autoimmune disorder caused by autoantibodies against the thyroid stimulating hormone receptor (TSHR) leading to overstimulation of the thyroid gland. Thyroid eye disease (TED) is the most common extra thyroidal manifestation of GD. Therapeutic options to treat TED are very limited and novel treatments need to be developed. In the present study we investigated the effect of linsitinib, a dual small-molecule kinase inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) and the Insulin receptor (IR) on the disease outcome of GD and TED. Methods: Linsitinib was administered orally for four weeks with therapy initiating in either the early ("active") or the late ("chronic") phases of the disease. In the thyroid and the orbit, autoimmune hyperthyroidism and orbitopathy were analyzed serologically (total anti-TSHR binding antibodies, stimulating anti TSHR antibodies, total T4 levels), immunohistochemically (H&E-, CD3-, TNFa- and Sirius red staining) and with immunofluorescence (F4/80 staining). An MRI was performed to quantify in vivo tissue remodeling inside the orbit. Results: Linsitinib prevented autoimmune hyperthyroidism in the early state of the disease, by reducing morphological changes indicative for hyperthyroidism and blocking T-cell infiltration, visualized by CD3 staining. In the late state of the disease linsitinib had its main effect in the orbit. Linsitinib reduced immune infiltration of T-cells (CD3 staining) and macrophages (F4/80 and TNFa staining) in the orbita in experimental GD suggesting an additional, direct effect of linsitinib on the autoimmune response. In addition, treatment with linsitinib normalized the amount of brown adipose tissue in both the early and late group. An in vivo MRI of the late group was performed and revealed a marked decrease of inflammation, visualized by 19F MR imaging, significant reduction of existing muscle edema and formation of brown adipose tissue. Conclusion: Here, we demonstrate that linsitinib effectively prevents development and progression of thyroid eye disease in an experimental murine model for Graves' disease. Linsitinib improved the total disease outcome, indicating the clinical significance of the findings and providing a path to therapeutic intervention of Graves' Disease. Our data support the use of linsitinib as a novel treatment for thyroid eye disease.


Assuntos
Doença de Graves , Oftalmopatia de Graves , Inibidores de Proteínas Quinases , Receptor IGF Tipo 1 , Animais , Camundongos , Doença de Graves/tratamento farmacológico , Oftalmopatia de Graves/tratamento farmacológico , Hipertireoidismo , Imidazóis , Inibidores de Proteínas Quinases/uso terapêutico , Receptor IGF Tipo 1/antagonistas & inibidores
6.
Cancer Res ; 83(13): 2123-2141, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37129912

RESUMO

Adrenocortical carcinoma (ACC) is a rare cancer in which tissue-specific differentiation is paradoxically associated with dismal outcomes. The differentiated ACC subtype CIMP-high is prevalent, incurable, and routinely fatal. CIMP-high ACC possess abnormal DNA methylation and frequent ß-catenin-activating mutations. Here, we demonstrated that ACC differentiation is maintained by a balance between nuclear, tissue-specific ß-catenin-containing complexes, and the epigenome. On chromatin, ß-catenin bound master adrenal transcription factor SF1 and hijacked the adrenocortical super-enhancer landscape to maintain differentiation in CIMP-high ACC; off chromatin, ß-catenin bound histone methyltransferase EZH2. SF1/ß-catenin and EZH2/ß-catenin complexes present in normal adrenals persisted through all phases of ACC evolution. Pharmacologic EZH2 inhibition in CIMP-high ACC expelled SF1/ß-catenin from chromatin and favored EZH2/ß-catenin assembly, erasing differentiation and restraining cancer growth in vitro and in vivo. These studies illustrate how tissue-specific programs shape oncogene selection, surreptitiously encoding targetable therapeutic vulnerabilities. SIGNIFICANCE: Oncogenic ß-catenin can use tissue-specific partners to regulate cellular differentiation programs that can be reversed by epigenetic therapies, identifying epigenetic control of differentiation as a viable target for ß-catenin-driven cancers.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Epigênese Genética , Cromatina/genética
7.
Endocrinology ; 164(6)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37183548

RESUMO

The pituitary gland regulates growth, metabolism, reproduction, the stress response, uterine contractions, lactation, and water retention. It secretes hormones in response to hypothalamic input, end organ feedback, and diurnal cues. The mechanisms by which pituitary stem cells are recruited to proliferate, maintain quiescence, or differentiate into specific cell types, especially thyrotropes, are not well understood. We used single-cell RNA sequencing in juvenile P7 mouse pituitary cells to identify novel factors in pituitary cell populations, with a focus on thyrotropes and rare subtypes. We first observed cells coexpressing markers of both thyrotropes and gonadotropes, such as Pou1f1 and Nr5a1. This was validated in vivo by both immunohistochemistry and lineage tracing of thyrotropes derived from Nr5a1-Cre; mTmG mice and demonstrates that Nr5a1-progenitors give rise to a proportion of thyrotropes during development. Our data set also identifies novel factors expressed in pars distalis and pars tuberalis thyrotropes, including the Shox2b isoform in all thyrotropes and Sox14 specifically in Pou1f1-negative pars tuberalis thyrotropes. We have therefore used single-cell transcriptomics to determine a novel developmental trajectory for thyrotropes and potential novel regulators of thyrotrope populations.


Assuntos
Doenças da Hipófise , Adeno-Hipófise , Gravidez , Feminino , Camundongos , Animais , Tireotropina/metabolismo , Hipófise/metabolismo , Fatores de Transcrição/metabolismo , Doenças da Hipófise/metabolismo , Imuno-Histoquímica , Adeno-Hipófise/metabolismo , Fatores de Transcrição SOXB2/metabolismo
8.
Nat Aging ; 3(7): 846-865, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37231196

RESUMO

Aging markedly increases cancer risk, yet our mechanistic understanding of how aging influences cancer initiation is limited. Here we demonstrate that the loss of ZNRF3, an inhibitor of Wnt signaling that is frequently mutated in adrenocortical carcinoma, leads to the induction of cellular senescence that remodels the tissue microenvironment and ultimately permits metastatic adrenal cancer in old animals. The effects are sexually dimorphic, with males exhibiting earlier senescence activation and a greater innate immune response, driven in part by androgens, resulting in high myeloid cell accumulation and lower incidence of malignancy. Conversely, females present a dampened immune response and increased susceptibility to metastatic cancer. Senescence-recruited myeloid cells become depleted as tumors progress, which is recapitulated in patients in whom a low myeloid signature is associated with worse outcomes. Our study uncovers a role for myeloid cells in restraining adrenal cancer with substantial prognostic value and provides a model for interrogating pleiotropic effects of cellular senescence in cancer.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Masculino , Animais , Feminino , Carcinoma Adrenocortical/genética , Envelhecimento , Senescência Celular , Transdução de Sinais , Neoplasias do Córtex Suprarrenal/genética , Microambiente Tumoral
10.
JAMA Surg ; 157(10): 870-877, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35976622

RESUMO

Importance: Adrenalectomy is the definitive treatment for multiple adrenal abnormalities. Advances in technology and genomics and an improved understanding of adrenal pathophysiology have altered operative techniques and indications. Objective: To develop evidence-based recommendations to enhance the appropriate, safe, and effective approaches to adrenalectomy. Evidence Review: A multidisciplinary panel identified and investigated 7 categories of relevant clinical concern to practicing surgeons. Questions were structured in the framework Population, Intervention/Exposure, Comparison, and Outcome, and a guided review of medical literature from PubMed and/or Embase from 1980 to 2021 was performed. Recommendations were developed using Grading of Recommendations, Assessment, Development and Evaluation methodology and were discussed until consensus, and patient advocacy representation was included. Findings: Patients with an adrenal incidentaloma 1 cm or larger should undergo biochemical testing and further imaging characterization. Adrenal protocol computed tomography (CT) should be used to stratify malignancy risk and concern for pheochromocytoma. Routine scheduled follow-up of a nonfunctional adrenal nodule with benign imaging characteristics and unenhanced CT with Hounsfield units less than 10 is not suggested. When unilateral disease is present, laparoscopic adrenalectomy is recommended for patients with primary aldosteronism or autonomous cortisol secretion. Patients with clinical and radiographic findings consistent with adrenocortical carcinoma should be treated at high-volume multidisciplinary centers to optimize outcomes, including, when possible, a complete R0 resection without tumor disruption, which may require en bloc radical resection. Selective or nonselective α blockade can be used to safely prepare patients for surgical resection of paraganglioma/pheochromocytoma. Empirical perioperative glucocorticoid replacement therapy is indicated for patients with overt Cushing syndrome, but for patients with mild autonomous cortisol secretion, postoperative day 1 morning cortisol or cosyntropin stimulation testing can be used to determine the need for glucocorticoid replacement therapy. When patient and tumor variables are appropriate, we recommend minimally invasive adrenalectomy over open adrenalectomy because of improved perioperative morbidity. Minimally invasive adrenalectomy can be achieved either via a retroperitoneal or transperitoneal approach depending on surgeon expertise, as well as tumor and patient characteristics. Conclusions and Relevance: Twenty-six clinically relevant and evidence-based recommendations are provided to assist surgeons with perioperative adrenal care.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Cirurgiões , Neoplasias das Glândulas Suprarrenais/cirurgia , Adrenalectomia/métodos , Cosintropina , Glucocorticoides , Humanos , Hidrocortisona , Feocromocitoma/cirurgia
11.
Endocr Rev ; 43(6): 1051-1073, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-35551369

RESUMO

The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/genética , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/genética , Mitotano/uso terapêutico , Glândulas Suprarrenais , Genômica
12.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166237

RESUMO

Osteocalcin is a hormone produced in bones by osteoblasts during bone formation. Numerous studies have demonstrated that adrenal gland-derived glucocorticoids inhibit osteocalcin production, which can ultimately cause deleterious bones loss. This loss establishes a unidirectional endocrine relationship between the adrenal glands and bone, however, whether osteocalcin reciprocally regulates glucocorticoid secretion remains unclear. In this issue of the JCI, Yadav and colleagues address how bone-derived osteocalcin influences adrenal organogenesis and function. Using a large variety of animal models, the authors established that embryonic osteocalcin signaling, specifically through the GPR158 receptor, regulates postnatal adrenal steroid concentrations throughout life. This work has translational potential, and we await future investigations that determine whether modulating osteocalcin levels could promote endogenous adrenocortical function in adrenocortical hypoplasia and glucocorticoid deficiency.


Assuntos
Osso e Ossos , Osteoblastos , Animais , Glucocorticoides/farmacologia , Osteocalcina/genética , Osteogênese/efeitos dos fármacos
13.
Endocr Pathol ; 32(1): 102-133, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33534120

RESUMO

Approximately one-tenth of the general population exhibit adrenal cortical nodules, and the incidence has increased. Afflicted patients display a multifaceted symptomatology-sometimes with rather spectacular features. Given the general infrequency as well as the specific clinical, histological, and molecular considerations characterizing these lesions, adrenal cortical tumors should be investigated by endocrine pathologists in high-volume tertiary centers. Even so, to distinguish specific forms of benign adrenal cortical lesions as well as to pinpoint malignant cases with the highest risk of poor outcome is often challenging using conventional histology alone, and molecular genetics and translational biomarkers are therefore gaining increased attention as a possible discriminator in this context. In general, our understanding of adrenal cortical tumorigenesis has increased tremendously the last decade, not least due to the development of next-generation sequencing techniques. Comprehensive analyses have helped establish the link between benign aldosterone-producing adrenal cortical proliferations and ion channel mutations, as well as mutations in the protein kinase A (PKA) signaling pathway coupled to cortisol-producing adrenal cortical lesions. Moreover, molecular classifications of adrenal cortical tumors have facilitated the distinction of benign from malignant forms, as well as the prognostication of the individual patients with verified adrenal cortical carcinoma, enabling high-resolution diagnostics that is not entirely possible by histology alone. Therefore, combinations of histology, immunohistochemistry, and next-generation multi-omic analyses are all needed in an integrated fashion to properly distinguish malignancy in some cases. Despite significant progress made in the field, current clinical and pathological challenges include the preoperative distinction of non-metastatic low-grade adrenal cortical carcinoma confined to the adrenal gland, adoption of individualized therapeutic algorithms aligned with molecular and histopathologic risk stratification tools, and histological confirmation of functional adrenal cortical disease in the context of multifocal adrenal cortical proliferations. We herein review the histological, genetic, and epigenetic landscapes of benign and malignant adrenal cortical neoplasia from a modern surgical endocrine pathology perspective and highlight key mechanisms of value for diagnostic and prognostic purposes.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Genômica , Biologia Molecular , Neoplasias do Córtex Suprarrenal/diagnóstico , Humanos , Prognóstico , Proteômica , Pesquisa Translacional Biomédica
14.
Mol Cell Endocrinol ; 522: 111120, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33338548

RESUMO

The Wnt signaling pathway is a critical mediator of the development and maintenance of several tissues. The adrenal cortex is highly dependent upon Wnt/ß-catenin signaling for proper zonation and endocrine function. Adrenocortical cells emerge in the peripheral capsule and subcapsular cortex of the gland as progenitor cells that centripetally differentiate into steroid hormone-producing cells of three functionally distinct concentric zones that respond robustly to various endocrine stimuli. Wnt/ß-catenin signaling mediates adrenocortical progenitor cell fate and tissue renewal to maintain the gland throughout life. Aberrant Wnt/ß-catenin signaling contributes to various adrenal disorders of steroid production and growth that range from hypofunction and hypoplasia to hyperfunction, hyperplasia, benign adrenocortical adenomas, and malignant adrenocortical carcinomas. Great strides have been made in defining the molecular underpinnings of adrenocortical homeostasis and disease, including the interplay between the capsule and cortex, critical components involved in maintaining the adrenocortical Wnt/ß-catenin signaling gradient, and new targets in adrenal cancer. This review seeks to examine these and other recent advancements in understanding adrenocortical Wnt/ß-catenin signaling and how this knowledge can inform therapeutic options for adrenal disease.


Assuntos
Córtex Suprarrenal/metabolismo , Córtex Suprarrenal/patologia , Doenças das Glândulas Suprarrenais/metabolismo , Doenças das Glândulas Suprarrenais/patologia , beta Catenina/metabolismo , Animais , Humanos , Ligantes , Regeneração , Via de Sinalização Wnt
15.
Mol Cell Endocrinol ; 519: 111043, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058950

RESUMO

The adrenal cortex functions to produce steroid hormones necessary for life. To maintain its functional capacity throughout life, the adrenal cortex must be continually replenished and rapidly repaired following injury. Moreover, the adrenal responds to endocrine-mediated organismal needs, which are highly dynamic and necessitate a precise steroidogenic response. To meet these diverse needs, the adrenal employs multiple cell populations with stem cell function. Here, we discuss the literature on adrenocortical stem cells using hematopoietic stem cells as a benchmark to examine the functional capacity of particular cell populations, including those located in the capsule and peripheral cortex. These populations are coordinately regulated by paracrine and endocrine signaling mechanisms, and display remarkable plasticity to adapt to different physiological and pathological conditions. Some populations also exhibit sex-specific activity, which contributes to highly divergent proliferation rates between sexes. Understanding mechanisms that govern adrenocortical renewal has broad implications for both regenerative medicine and cancer.


Assuntos
Córtex Suprarrenal/citologia , Córtex Suprarrenal/fisiologia , Plasticidade Celular/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Feminino , Humanos , Masculino , Modelos Biológicos , Caracteres Sexuais , Via de Sinalização Wnt
16.
Horm Metab Res ; 52(8): 607-613, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32791542

RESUMO

Lack of routine fresh or frozen tissue is a barrier to widespread transcriptomic analysis of adrenal cortical tumors and an impediment to translational research in endocrinology and endocrine oncology. Our group has previously pioneered the use of targeted amplicon-based next-generation sequencing for archival formalin-fixed paraffin-embedded (FFPE) adrenal tissue specimens to characterize the spectrum of somatic mutations in various forms of primary aldosteronism. Herein, we developed and validated a novel 194-amplicon targeted next-generation RNA sequencing (RNAseq) assay for transcriptomic analysis of adrenal tumors using clinical-grade FFPE specimens. Targeted RNAseq-derived expression values for 27 adrenal cortical tumors, including aldosterone-producing adenomas (APA; n=8), cortisol-producing adenomas (CPA; n=11), and adrenal cortical carcinomas (ACC; n=8), highlighted known differentially-expressed genes (DEGs; i. e., CYP11B2, IGF2, etc.) and tumor type-specific transcriptional modules (i. e., high cell cycle/proliferation transcript expression in ACC, etc.), and a subset of DEGs was validated orthogonally using quantitative reverse transcription PCR (qRT-PCR). Finally, unsupervised hierarchical clustering using a subset of high-confidence DEGs revealed three discrete clusters representing APA, CPA, and ACC tumors with corresponding unique gene expression signatures, suggesting potential clinical utility for a transcriptomic-based approach to tumor classification. Overall, these data support the use of targeted amplicon-based RNAseq for comprehensive transcriptomic profiling of archival FFPE adrenal tumor material and indicate that this approach may facilitate important translational research opportunities for the study of these tumors.


Assuntos
Neoplasias do Córtex Suprarrenal/classificação , Neoplasias do Córtex Suprarrenal/diagnóstico , Biomarcadores Tumorais/genética , Inclusão em Parafina/métodos , RNA-Seq/métodos , Transcriptoma , Neoplasias do Córtex Suprarrenal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Diagnóstico Diferencial , Feminino , Seguimentos , Formaldeído/química , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
17.
J Clin Endocrinol Metab ; 104(9): 3743-3750, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220287

RESUMO

CONTEXT: Adrenocortical carcinoma (ACC) is a rare malignancy with high rates of recurrence and poor prognosis. The role of radiotherapy (RT) in localized ACC has been controversial, and RT is not routinely offered. OBJECTIVE: To evaluate the benefit of adjuvant RT on outcomes in ACC. DESIGN: This is a retrospective propensity-matched analysis. SETTING: All patients were seen through the University of Michigan's Endocrine Oncology program, and all those who underwent RT were treated at the University of Michigan. PARTICIPANTS: Of 424 patients with ACC, 78 were selected; 39 patients underwent adjuvant radiation. INTERVENTION: Adjuvant RT to the tumor bed and adjacent lymph nodes. MAIN OUTCOMES MEASURES: Time to local failure, distant failure, or death. RESULTS: Median follow-up time was 4.21 years (95% CI, 2.79 to 4.94). The median radiation dose was 55 Gy (range, 45 to 60). The 3-year overall survival estimate for patients improved from 48.6% for patients without RT (95% CI, 29.7 to 65.2) to 77.7% (95% CI, 56.3 to 89.5) with RT, with a hazard ratio (HR) of 3.59 (95% CI, 1.60 to 8.09; P = 0.002). RT improved local recurrence-free survival (RFS) from 34.2% (95% CI, 18.8 to 50.3) to 59.5% (95% CI, 39.0 to 75.0), with an HR of 2.67 (95% CI, 1.38 to 5.19; P = 0.0035). RT improved all RFS from 18.3% (95% CI, 6.7 to 34.3) to 46.7% (95% CI, 26.9 to 64.3), with an HR 2.59 (95% CI, 1.40 to 4.79; P = 0.0024). CONCLUSIONS: In the largest single institution study to date, adjuvant RT after gross resection of ACC improved local RFS, all RFS, and overall survival in this propensity-matched analysis. Adjuvant RT should be considered a part of multidisciplinary management for patients with ACC.


Assuntos
Neoplasias do Córtex Suprarrenal/mortalidade , Carcinoma Adrenocortical/mortalidade , Recidiva Local de Neoplasia/mortalidade , Radioterapia Adjuvante/mortalidade , Adolescente , Neoplasias do Córtex Suprarrenal/patologia , Neoplasias do Córtex Suprarrenal/radioterapia , Carcinoma Adrenocortical/patologia , Carcinoma Adrenocortical/radioterapia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
18.
Clin Cancer Res ; 25(11): 3276-3288, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770352

RESUMO

PURPOSE: Adrenocortical carcinoma (ACC) is a rare, aggressive malignancy with few therapies; however, patients with locoregional disease have variable outcomes. The Cancer Genome Atlas project on ACC (ACC-TCGA) identified that cancers of patients with homogeneously rapidly recurrent or fatal disease bear a unique CpG island hypermethylation phenotype, "CIMP-high." We sought to identify a biomarker that faithfully captures this subgroup.Experimental Design: We analyzed ACC-TCGA data to characterize differentially regulated biological processes, and identify a biomarker that is methylated and silenced exclusively in CIMP-high ACC. In an independent cohort of 114 adrenocortical tumors (80 treatment-naive primary ACC, 22 adrenocortical adenomas, and 12 non-naive/nonprimary ACC), we evaluated biomarker methylation by a restriction digest/qPCR-based approach, validated by targeted bisulfite sequencing. We evaluated expression of this biomarker and additional prognostic markers by qPCR. RESULTS: We show that CIMP-high ACC is characterized by upregulation of cell cycle and DNA damage response programs, and identify that hypermethylation and silencing of G0S2 distinguishes this subgroup. We confirmed G0S2 hypermethylation and silencing is exclusive to 40% of ACC, and independently predicts shorter disease-free and overall survival (median 14 and 17 months, respectively). Finally, G0S2 methylation combined with validated molecular markers (BUB1B-PINK1) stratifies ACC into three groups, with uniformly favorable, intermediate, and uniformly dismal outcomes. CONCLUSIONS: G0S2 hypermethylation is a hallmark of rapidly recurrent or fatal ACC, amenable to targeted assessment using routine molecular diagnostics. Assessing G0S2 methylation is straightforward, feasible for clinical decision-making, and will enable the direction of efficacious adjuvant therapies for patients with aggressive ACC.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/patologia , Proteínas de Ciclo Celular/genética , Metilação de DNA , Neoplasias do Córtex Suprarrenal/mortalidade , Carcinoma Adrenocortical/mortalidade , Biomarcadores Tumorais , Linhagem Celular Tumoral , Ilhas de CpG , Mineração de Dados , Feminino , Inativação Gênica , Loci Gênicos , Humanos , Masculino , Gradação de Tumores , Fenótipo , Prognóstico , Recidiva
19.
Genes Dev ; 33(3-4): 209-220, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692207

RESUMO

Spatiotemporal control of Wnt signaling is essential for the development and homeostasis of many tissues. The transmembrane E3 ubiquitin ligases ZNRF3 (zinc and ring finger 3) and RNF43 (ring finger protein 43) antagonize Wnt signaling by promoting degradation of frizzled receptors. ZNRF3 and RNF43 are frequently inactivated in human cancer, but the molecular and therapeutic implications remain unclear. Here, we demonstrate that adrenocortical-specific loss of ZNRF3, but not RNF43, results in adrenal hyperplasia that depends on Porcupine-mediated Wnt ligand secretion. Furthermore, we discovered a Wnt/ß-catenin signaling gradient in the adrenal cortex that is disrupted upon loss of ZNRF3. Unlike ß-catenin gain-of-function models, which induce high Wnt/ß-catenin activation and expansion of the peripheral cortex, ZNRF3 loss triggers activation of moderate-level Wnt/ß-catenin signaling that drives proliferative expansion of only the histologically and functionally distinct inner cortex. Genetically reducing ß-catenin dosage significantly reverses the ZNRF3-deficient phenotype. Thus, homeostatic maintenance of the adrenal cortex is dependent on varying levels of Wnt/ß-catenin activation, which is regulated by ZNRF3.


Assuntos
Córtex Suprarrenal/metabolismo , Homeostase/genética , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Córtex Suprarrenal/citologia , Córtex Suprarrenal/crescimento & desenvolvimento , Doenças do Córtex Suprarrenal/fisiopatologia , Animais , Proliferação de Células/genética , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Modelos Animais , Ativação Transcricional/genética , Ubiquitina-Proteína Ligases/genética
20.
Curr Opin Endocr Metab Res ; 8: 66-71, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32258821

RESUMO

The adrenal cortex is an endocrine organ comprised of three histological zones, the outermost zona glomerulosa, the intermediate zona fasciculata, and the innermost zona reticularis. High plasticity of the adrenal gland is supported by pools of stem and progenitor cells that are deployed to sustain physiological and homeostatic demands. In recent decades, exciting new discoveries elucidating the identity, function, and fate of these cell populations have emerged. In this review, we describe paracrine and endocrine signaling loops that are crucial for adrenal biology, focusing on recent studies unpacking the enigmatic nature of adrenal stem and progenitor cell populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...